Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Viruses ; 15(4)2023 03 24.
Artículo en Inglés | MEDLINE | ID: covidwho-2305206

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) utilizes cellular trafficking pathways to process its structural proteins and move them to the site of assembly. Nevertheless, the exact process of assembly and subcellular trafficking of SARS-CoV-2 proteins remains largely unknown. Here, we have identified and characterized Rab1B as an important host factor for the trafficking and maturation of the spike protein (S) after synthesis at the endoplasmic reticulum (ER). Using confocal microscopy, we showed that S and Rab1B substantially colocalized in compartments of the early secretory pathway. Co-expression of dominant-negative (DN) Rab1B N121I leads to an aberrant distribution of S into perinuclear spots after ectopic expression and in SARS-CoV-2-infected cells caused by either structural rearrangement of the ERGIC or Golgi or missing interaction between Rab1B and S. Western blot analyses revealed a complete loss of the mature, cleaved S2 subunit in cell lysates and culture supernatants upon co-expression of DN Rab1B N121I. In sum, our studies indicate that Rab1B is an important regulator of trafficking and maturation of SARS-CoV-2 S, which not only improves our understanding of the coronavirus replication cycle but also may have implications for the development of antiviral strategies.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Unión al GTP rab1/genética , Proteínas de Unión al GTP rab1/análisis , Proteínas de Unión al GTP rab1/metabolismo
2.
Front Immunol ; 13: 1072702, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2306569

RESUMEN

The diversity of three hypervariable loops in antibody heavy chain and light chain, termed the complementarity-determining regions (CDRs), defines antibody's binding affinity and specificity owing to the direct contact between the CDRs and antigens. These CDR regions typically contain tyrosine (Tyr) residues that are known to engage in both nonpolar and pi stacking interaction with antigens through their complementary aromatic ring side chains. Nearly two decades ago, sulfotyrosine residue (sTyr), a negatively charged Tyr formed by Golgi-localized membrane-bound tyrosylprotein sulfotransferases during protein trafficking, were also found in the CDR regions and shown to play an important role in modulating antibody-antigen interaction. This breakthrough finding demonstrated that antibody repertoire could be further diversified through post-translational modifications, in addition to the conventional genetic recombination. This review article summarizes the current advances in the understanding of the Tyr-sulfation modification mechanism and its application in potentiating protein-protein interaction for antibody engineering and production. Challenges and opportunities are also discussed.


Asunto(s)
Regiones Determinantes de Complementariedad , Cadenas Pesadas de Inmunoglobulina , Regiones Determinantes de Complementariedad/genética , Cadenas Pesadas de Inmunoglobulina/genética , Antígenos , Aparato de Golgi/metabolismo , Tirosina/metabolismo
3.
J Cell Sci ; 136(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2286166

RESUMEN

The coronavirus SARS-CoV-2, the agent of the deadly COVID-19 pandemic, is an enveloped virus propagating within the endocytic and secretory organelles of host mammalian cells. Enveloped viruses modify the ionic homeostasis of organelles to render their intra-luminal milieu permissive for viral entry, replication and egress. Here, we show that infection of Vero E6 cells with the delta variant of the SARS-CoV-2 alkalinizes the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) as well as lysosomes, mimicking the effect of inhibitors of vacuolar proton ATPases. We further show the envelope protein of SARS-CoV-2 accumulates in the ERGIC when expressed in mammalian cells and selectively dissipates the ERGIC pH. This viroporin action is prevented by mutations of Val25 but not Asn15 within the channel pore of the envelope (E) protein. We conclude that the envelope protein acts as a proton channel in the ERGIC to mitigate the acidity of this intermediate compartment. The altered pH homeostasis of the ERGIC likely contributes to the virus fitness and pathogenicity, making the E channel an attractive drug target for the treatment of COVID-19.


Asunto(s)
COVID-19 , Proteínas del Envoltorio Viral , Animales , Humanos , Proteínas del Envoltorio Viral/metabolismo , Proteínas Viroporinas/metabolismo , COVID-19/metabolismo , Protones , Pandemias , SARS-CoV-2/metabolismo , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo
4.
Science ; 378(6615): eabn5637, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2063967

RESUMEN

Mammalian cells can generate amino acids through macropinocytosis and lysosomal breakdown of extracellular proteins, which is exploited by cancer cells to grow in nutrient-poor tumors. Through genetic screens in defined nutrient conditions, we characterized LYSET, a transmembrane protein (TMEM251) selectively required when cells consume extracellular proteins. LYSET was found to associate in the Golgi with GlcNAc-1-phosphotransferase, which targets catabolic enzymes to lysosomes through mannose-6-phosphate modification. Without LYSET, GlcNAc-1-phosphotransferase was unstable because of a hydrophilic transmembrane domain. Consequently, LYSET-deficient cells were depleted of lysosomal enzymes and impaired in turnover of macropinocytic and autophagic cargoes. Thus, LYSET represents a core component of the lysosomal enzyme trafficking pathway, underlies the pathomechanism for hereditary lysosomal storage disorders, and may represent a target to suppress metabolic adaptations in cancer.


Asunto(s)
Aparato de Golgi , Enfermedades por Almacenamiento Lisosomal , Lisosomas , Proteínas , Animales , Aparato de Golgi/metabolismo , Humanos , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Ratones , Transporte de Proteínas , Proteínas/genética , Proteínas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
5.
Sci Rep ; 12(1): 14975, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2008330

RESUMEN

Retro-2 directly interacts with an ER exit site protein, Sec16A, inhibiting ER exit of a Golgi tSNARE, Syntaxin5, which results in rapid re-distribution of Syntaxin5 to the ER. Recently, it was shown that SARS-CoV-2 infection disrupts the Golgi apparatus within 6-12 h, while its replication was effectively inhibited by Retro-2 in cultured human lung cells. Yet, exactly how Retro-2 may influence ultrastructure of the Golgi apparatus have not been thoroughly investigated. In this study, we characterized the effect of Retro-2 treatment on ultrastructure of the Golgi apparatus using electron microscopy and EM tomography. Our initial results on protein secretion showed that Retro-2 treatment does not significantly influence secretion of either small or large cargos. Ultra-structural study of the Golgi, however, revealed rapid accumulation of COPI-like vesicular profiles in the perinuclear area and a partial disassembly of the Golgi stack under electron microscope within 3-5 h, suggesting altered Golgi organization in these cells. Retro-2 treatment in cells depleted of GRASP65/55, the two well-known Golgi structural proteins, induced complete and rapid disassembly of the Golgi into individual cisterna. Taken together, these results suggest that Retro-2 profoundly alters Golgi structure to a much greater extent than previously anticipated.


Asunto(s)
COVID-19 , Aparato de Golgi , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , SARS-CoV-2 , Proteínas de Transporte Vesicular/metabolismo
7.
Histochem Cell Biol ; 158(3): 241-251, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1858993

RESUMEN

After their assembly by budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)-Golgi interface, coronaviruses (CoVs) are released from their host cells following a pathway that remains poorly understood. The traditional view that CoV exit occurs via the constitutive secretory route has recently been questioned by studies suggesting that this process involves unconventional secretion. Here, using the avian infectious bronchitis virus (IBV) as a well-established model virus, we have applied confocal microscopy to investigate the pathway of CoV egress from epithelial Vero cells. We report a novel effect of IBV infection on cellular endomembranes, namely, the compaction of the pericentrosomal endocytic recycling compartment (ERC) defined by the GTPase Rab11, which coincides with the previously described Golgi fragmentation, as well as virus release. Despite Golgi disassembly, the IC elements containing the major IBV membrane protein (M)-which mostly associates with newly formed virus particles-maintain their close spatial connection with the Rab11-positive endocytic recycling system. Moreover, partial colocalization of the M protein with Rab11 was observed, whereas M displayed negligible overlap with LAMP-1, indicating that IBV egress does not occur via late endosomes or lysosomes. Synchronization of virus release using temperature-shift protocols was accompanied by increased colocalization of M and Rab11 in vesicular and vacuolar structures in the pericentrosomal region and at the cell periphery, most likely representing IBV-containing transport carriers. In conclusion, these results add CoVs to the growing list of viruses exploiting the endocytic recycling apparatus defined by Rab11 for their assembly and/or release.


Asunto(s)
Coronavirus , Animales , Chlorocebus aethiops , Coronavirus/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Células Vero , Proteínas de Unión al GTP rab/metabolismo
8.
Commun Biol ; 5(1): 115, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1684117

RESUMEN

ß-Coronaviruses such as SARS-CoV-2 hijack coatomer protein-I (COPI) for spike protein retrograde trafficking to the progeny assembly site in endoplasmic reticulum-Golgi intermediate compartment (ERGIC). However, limited residue-level details are available into how the spike interacts with COPI. Here we identify an extended COPI binding motif in the spike that encompasses the canonical K-x-H dibasic sequence. This motif demonstrates selectivity for αCOPI subunit. Guided by an in silico analysis of dibasic motifs in the human proteome, we employ mutagenesis and binding assays to show that the spike motif terminal residues are critical modulators of complex dissociation, which is essential for spike release in ERGIC. αCOPI residues critical for spike motif binding are elucidated by mutagenesis and crystallography and found to be conserved in the zoonotic reservoirs, bats, pangolins, camels, and in humans. Collectively, our investigation on the spike motif identifies key COPI binding determinants with implications for retrograde trafficking.


Asunto(s)
COVID-19/metabolismo , Proteína Coat de Complejo I/metabolismo , Proteína Coatómero/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , COVID-19/genética , COVID-19/virología , Proteína Coat de Complejo I/química , Proteína Coat de Complejo I/genética , Proteína Coatómero/química , Proteína Coatómero/genética , Simulación por Computador , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutación , Filogenia , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/clasificación , Glicoproteína de la Espiga del Coronavirus/genética , Repeticiones WD40/genética
9.
J Phys Chem Lett ; 12(51): 12249-12255, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1586057

RESUMEN

SARS-CoV-2 and other coronaviruses pose major threats to global health, yet computational efforts to understand them have largely overlooked the process of budding, a key part of the coronavirus life cycle. When expressed together, coronavirus M and E proteins are sufficient to facilitate budding into the ER-Golgi intermediate compartment (ERGIC). To help elucidate budding, we ran atomistic molecular dynamics (MD) simulations using the Feig laboratory's refined structural models of the SARS-CoV-2 M protein dimer and E protein pentamer. Our MD simulations consisted of M protein dimers and E protein pentamers in patches of membrane. By examining where these proteins induced membrane curvature in silico, we obtained insights around how the budding process may occur. Multiple M protein dimers acted together to induce global membrane curvature through protein-lipid interactions while E protein pentamers kept the membrane planar. These results could eventually help guide development of antiviral therapeutics that inhibit coronavirus budding.


Asunto(s)
Proteínas de la Envoltura de Coronavirus/metabolismo , Simulación de Dinámica Molecular , SARS-CoV-2/fisiología , Proteínas de la Matriz Viral/metabolismo , COVID-19/patología , COVID-19/virología , Proteínas de la Envoltura de Coronavirus/química , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Multimerización de Proteína , Transporte de Proteínas , SARS-CoV-2/aislamiento & purificación , Proteínas de la Matriz Viral/química
10.
Dev Cell ; 56(20): 2790-2807.e8, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1446559

RESUMEN

SARS-CoV-2 virions are surrounded by a lipid bilayer that contains membrane proteins such as spike, responsible for target-cell binding and virus fusion. We found that during SARS-CoV-2 infection, spike becomes lipid modified, through the sequential action of the S-acyltransferases ZDHHC20 and 9. Particularly striking is the rapid acylation of spike on 10 cytosolic cysteines within the ER and Golgi. Using a combination of computational, lipidomics, and biochemical approaches, we show that this massive lipidation controls spike biogenesis and degradation, and drives the formation of localized ordered cholesterol and sphingolipid-rich lipid nanodomains in the early Golgi, where viral budding occurs. Finally, S-acylation of spike allows the formation of viruses with enhanced fusion capacity. Our study points toward S-acylating enzymes and lipid biosynthesis enzymes as novel therapeutic anti-viral targets.


Asunto(s)
Acilación/fisiología , Tratamiento Farmacológico de COVID-19 , Lípidos de la Membrana/metabolismo , SARS-CoV-2/patogenicidad , Aciltransferasas/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/virología , Humanos , Ensamble de Virus/fisiología
11.
Cells ; 10(10)2021 09 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1438526

RESUMEN

Eukaryotic cells contain dynamic membrane-bound organelles that are constantly remodeled in response to physiological and environmental cues. Key organelles are the endoplasmic reticulum, the Golgi apparatus and the plasma membrane, which are interconnected by vesicular traffic through the secretory transport route. Numerous viruses, especially enveloped viruses, use and modify compartments of the secretory pathway to promote their replication, assembly and cell egression by hijacking the host cell machinery. In some cases, the subversion mechanism has been uncovered. In this review, we summarize our current understanding of how the secretory pathway is subverted and exploited by viruses belonging to Picornaviridae, Coronaviridae, Flaviviridae,Poxviridae, Parvoviridae and Herpesviridae families.


Asunto(s)
Retículo Endoplásmico/virología , Aparato de Golgi/virología , Vías Secretoras/fisiología , Virus/aislamiento & purificación , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Membrana Celular/virología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos
12.
Nat Commun ; 12(1): 5333, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1402067

RESUMEN

The Spike (S) protein of SARS-CoV-2 binds ACE2 to direct fusion with host cells. S comprises a large external domain, a transmembrane domain, and a short cytoplasmic tail. Understanding the intracellular trafficking of S is relevant to SARS-CoV-2 infection, and to vaccines expressing full-length S from mRNA or adenovirus vectors. Here we report a proteomic screen for cellular factors that interact with the cytoplasmic tail of S. We confirm interactions with the COPI and COPII vesicle coats, ERM family actin regulators, and the WIPI3 autophagy component. The COPII binding site promotes exit from the endoplasmic reticulum, and although binding to COPI should retain S in the early Golgi where viral budding occurs, there is a suboptimal histidine residue in the recognition motif. As a result, S leaks to the surface where it accumulates and can direct the formation of multinucleate syncytia. Thus, the trafficking signals in the tail of S indicate that syncytia play a role in the SARS-CoV-2 lifecycle.


Asunto(s)
COVID-19/metabolismo , Membrana Celular/metabolismo , Células Gigantes/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Unión Proteica , Dominios Proteicos , Proteómica , Células Vero , Ensamble de Virus/genética
13.
Uirusu ; 70(1): 29-36, 2020.
Artículo en Japonés | MEDLINE | ID: covidwho-1221885

RESUMEN

Coronaviruses are pathogens that infect many of animals, resulting in respiratory or enteric diseases. Coronaviruses constitute Nidovirales together with Arteriviridae. Most of human coronaviruses are known to cause mild illness and common cold. However, an epidemic of severe acute respiratory syndrome (SARS) occurred in 2002, ten years after SARS epidemic Middle East respiratory syndrome (MERS) emerged in 2012. Now, we face on a novel coronavirus which emerges in end of 2019. This novel coronavirus is named as SARS-CoV-2. SARS-CoV-2 is spread to worldwide within one to two months and causes coronavirus disease 2019 (COVID-19), respiratory illness. Coronaviruses are enveloped viruses possessing a positive-sense and large single stranded RNA genomes. The 5' two-thirds of the CoV genome consists of two overlapping open reading frames (ORFs 1a and 1b) that encode non-structural proteins (nsps). The other one-third of the genome consists of ORFs encoding structural proteins, including spike (S), membrane (M), envelope (E) and nucleocapsid (N) proteins, and accessory proteins. Upon infection of CoV into host cells, the translation of two precursor polyproteins, pp1a and pp1ab, occurs and these polyproteins are cleaved into 16 nsps by viral proteases. Structural proteins assemble to the vesicles located from ER to Golgi (ER Golgiintermediate compartment) and virions bud into the vesicles. Virions are released from infectedcells via exocytosis.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Animales , Retículo Endoplásmico/metabolismo , Genoma Viral/genética , Aparato de Golgi/metabolismo , Humanos , Sistemas de Lectura Abierta , Poliproteínas/metabolismo , ARN Viral/genética , Proteasas Virales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/metabolismo , Virión
14.
Cells ; 10(3)2021 02 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1107394

RESUMEN

Coronaviruses (CoVs) assemble by budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)-Golgi interface. However, why CoVs have chosen the IC as their intracellular site of assembly and how progeny viruses are delivered from this compartment to the extracellular space has remained unclear. Here we address these enigmatic late events of the CoV life cycle in light of recently described properties of the IC. Of particular interest are the emerging spatial and functional connections between IC elements and recycling endosomes (REs), defined by the GTPases Rab1 and Rab11, respectively. The establishment of IC-RE links at the cell periphery, around the centrosome and evidently also at the noncompact zones of the Golgi ribbon indicates that-besides traditional ER-Golgi communication-the IC also promotes a secretory process that bypasses the Golgi stacks, but involves its direct connection with the endocytic recycling system. The initial confinement of CoVs to the lumen of IC-derived large transport carriers and their preferential absence from Golgi stacks is consistent with the idea that they exit cells following such an unconventional route. In fact, CoVs may share this pathway with other intracellularly budding viruses, lipoproteins, procollagen, and/or protein aggregates experimentally introduced into the IC lumen.


Asunto(s)
Retículo Endoplásmico/virología , Espacio Extracelular/virología , Aparato de Golgi/virología , Membranas Intracelulares/virología , SARS-CoV-2/fisiología , Vías Secretoras , Liberación del Virus , Animales , COVID-19/terapia , COVID-19/virología , Centrosoma/metabolismo , Espacio Extracelular/metabolismo , Aparato de Golgi/metabolismo , Humanos , Transporte de Proteínas
15.
J Biol Chem ; 296: 100111, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1066049

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a ß-coronavirus, is the causative agent of the COVID-19 pandemic. Like for other coronaviruses, its particles are composed of four structural proteins: spike (S), envelope (E), membrane (M), and nucleoprotein (N) proteins. The involvement of each of these proteins and their interactions are critical for assembly and production of ß-coronavirus particles. Here, we sought to characterize the interplay of SARS-CoV-2 structural proteins during the viral assembly process. By combining biochemical and imaging assays in infected versus transfected cells, we show that E and M regulate intracellular trafficking of S as well as its intracellular processing. Indeed, the imaging data reveal that S is relocalized at endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) or Golgi compartments upon coexpression of E or M, as observed in SARS-CoV-2-infected cells, which prevents syncytia formation. We show that a C-terminal retrieval motif in the cytoplasmic tail of S is required for its M-mediated retention in the ERGIC, whereas E induces S retention by modulating the cell secretory pathway. We also highlight that E and M induce a specific maturation of N-glycosylation of S, independently of the regulation of its localization, with a profile that is observed both in infected cells and in purified viral particles. Finally, we show that E, M, and N are required for optimal production of virus-like-particles. Altogether, these results highlight how E and M proteins may influence the properties of S proteins and promote the assembly of SARS-CoV-2 viral particles.


Asunto(s)
Proteínas de la Envoltura de Coronavirus/genética , Proteínas de la Nucleocápside/genética , SARS-CoV-2/crecimiento & desarrollo , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas de la Matriz Viral/genética , Virión/crecimiento & desarrollo , Ensamble de Virus/fisiología , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Línea Celular Tumoral , Chlorocebus aethiops , Proteínas de la Envoltura de Coronavirus/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Retículo Endoplásmico/virología , Expresión Génica , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Aparato de Golgi/virología , Células HEK293 , Hepatocitos/metabolismo , Hepatocitos/ultraestructura , Hepatocitos/virología , Interacciones Huésped-Patógeno/genética , Humanos , Proteínas de la Nucleocápside/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Proteínas de la Matriz Viral/metabolismo , Virión/genética , Virión/metabolismo , Internalización del Virus , Liberación del Virus/fisiología
16.
Traffic ; 21(8): 552-555, 2020 08.
Artículo en Inglés | MEDLINE | ID: covidwho-822707

RESUMEN

On April 10, 2020, a treasured cell biologist and ardent champion of the Golgi complex passed away. This has caused deep sadness, and we seek to commemorate her remarkable scientific contributions, her warm and generous personality, and her endearing sense of humor.


Asunto(s)
Fisiología/historia , Vías Secretoras , Femenino , Aparato de Golgi/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Transporte de Proteínas
17.
Cell Signal ; 73: 109706, 2020 09.
Artículo en Inglés | MEDLINE | ID: covidwho-625663

RESUMEN

Chloroquine (CQ) and its analogue hydroxychloroquine (HCQ) have been thrust into our everyday vernacular because some believe, based on very limited basic and clinical data, that they might be helpful in preventing and/or lessening the severity of the pandemic coronavirus disease 2019 (COVID-19). However, lacking is a temperance in enthusiasm for their possible use as well as sufficient perspective on their effects and side-effects. CQ and HCQ have well-known properties of being diprotic weak bases that preferentially accumulate in acidic organelles (endolysosomes and Golgi apparatus) and neutralize luminal pH of acidic organelles. These primary actions of CQ and HCQ are responsible for their anti-malarial effects; malaria parasites rely on acidic digestive vacuoles for survival. Similarly, de-acidification of endolysosomes and Golgi by CQ and HCQ may block severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) integration into host cells because SARS-CoV-2 may require an acidic environment for its entry and for its ability to bud and infect bystander cells. Further, de-acidification of endolysosomes and Golgi may underly the immunosuppressive effects of these two drugs. However, modern cell biology studies have shown clearly that de-acidification results in profound changes in the structure, function and cellular positioning of endolysosomes and Golgi, in signaling between these organelles and other subcellular organelles, and in fundamental cellular functions. Thus, studying the possible therapeutic effects of CQ and HCQ against COVID-19 must occur concurrent with studies of the extent to which these drugs affect organellar and cell biology. When comprehensively examined, a better understanding of the Janus sword actions of these and other drugs might yield better decisions and better outcomes.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Cloroquina/farmacología , Endosomas/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Hidroxicloroquina/farmacología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus/enzimología , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidad , COVID-19 , Cloroquina/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Citocinas/metabolismo , Endocitosis/efectos de los fármacos , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hidroxicloroquina/uso terapéutico , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Malaria/tratamiento farmacológico , Pandemias/prevención & control , Neumonía Viral/tratamiento farmacológico , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA